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Abstract Given the demand between each origin-destination pair on a network, the planar 

hub location problem is to locate the multiple hubs anywhere on the plane and to assign the 

traffic to them so as to minimize the total travelling cost. The trips between any two points 

can be nonstop (no hubs used) or started by visiting any of the hubs. The travel cost between 

hubs is discounted with a factor. It is assumed that each point can be served by multiple 

hubs. 

We propose a probabilistic clustering method for the planar hub-location problem which 

is analogous to the method of Iyigun and Ben-Israel (in Operations Research Letters 38, 

207–214, 2010; Computational Optmization and Applications, 2013) for the solution of the 

multi-facility location problem. The proposed method is an iterative probabilistic approach 

assuming that all trips can be taken with probabilities that depend on the travel costs based 

on the hub locations. Each hub location is the convex combination of all data points and 

other hubs. The probabilities are updated at each iteration together with the hub locations. 

Computations stop when the hub locations stop moving. 

Fermat-Weber problem and multi-facility location problem are the special cases of the 

proposed approach. 

Keywords Hub location problem · Planar hub location · Clustering · Fermat–Weber problem 

· Probabilistic assignments 

1 Introduction 

We consider a transportation network consisting of N cities, with known locations { xi : i ∈ 

 and known demands for travel between cities, wij = { the demand for travel from city i 

to city  
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To accommodate all traffic and make it more efficient, some (or all) of the traffic is directed 

through hubs. A hub is a facility where passengers from several nearby origins can be pooled 

for a trip to a common destination, or to another hub (from where the passengers continue 

to their destinations). By combining trips and directing them through hubs, the sum of 

distances traveled in the system can be reduced. Another advantage is greater efficiency of 

travel, because typically bigger planes are used between hubs, and they are flown at higher 

altitudes. 

The hub location problem (HLP) is to locate K hubs in the network so as to minimize the 

total travel cost in the system. 

In some HLP cases the hub locations are constrained to lie in a given subset of the plane, 

in particular a given subset of the data points. This constrained problem is called discrete 

hub location model. It was first considered by O’Kelly (1987), introducing a quadratic 

integer program for location of interacting hub facilities. Alternative integer linear 

programming formulations of discrete hub location problems have also been provided by 

Campbell (1994a), Bryan (1998), Ernst and Krishnamoorthy (1996, 1998), and O’Kelly et 

al. (1996). 

The original formulation in O’Kelly (1987) assumes a single assignment from a datapoint 

to a unique hub. In some of the other HLP models, it is allowed or required, for a customer 

to be connected to more than one hub (called multiple-assignment). In general, discrete HLP 

is often solved by integer programming (i.e. Labbé et al. 2005). Although most of the single 

assignment problems are addressed by heuristics (see, Ernst and Krishnamoorthy 1996; 

Ernst et al. 2002 and Gavriliouk 2009), integer programming models are studied for solving 

multiple assignment discrete HLP problems with small gaps of the corresponding linear 

programming relaxations (Hamacher et al. 2004). In recent studies, Bender’s decomposition 

is successfully used for solving large problems (see Camargo et al. 2008 and Contreras et 

al. 2011). 

In the planar or continuous version of HLP, the hubs can be located anywhere in the 

plane. It is originally considered in O’Kelly (1986) and subsequently the problem was 

studied by Aykin (1988, 1995), and Aykin and Brown (1992). A clustering approach is 

presented in O’Kelly (1992) for solving the planar HLP. Although several computational 

approaches are studied for the discrete hub location problem, the computational 

developments for the planar case is limited in the literature (see Campbell 1994b; Bryan and 

O’Kelly 1999; Alumur and Kara 2008 and Campbell and O’Kelly 2012 for detailed 

reviews). 

We study here the continuous, or planar, HLP model and it is assumed that the data 

points (customers) can be served by multiple hubs. We propose a probabilistic 

approximation of HLP, analogous to the method proposed in Iyigun and Ben-Israel (2010), 

Iyigun and BenIsrael (2013) for the solution of the multi-facility location problem, see Sect. 

2. 

The major contribution of this paper is to propose an approach for solving planar HLP. 

The proposed method is quite efficient for solving large instances of planar HLPs which is 
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not possible in the discrete case. The approach is originating from a clustering method and 

it enables to solve large instances of continuous version of HLP. Many real world problems 

from postal and trucking logistics, aerial transportation, and telecommunication applications 

motivate solving large scale instances of continuous hub location problem. 

The plan of the paper is as follows. Section 2 describes the multi-facility location problem 

and Sect. 3 defines the terminology used and describes the hub location problem (H.K). In 

Sect. 4, calculation of travel costs is explained. 

Section 5 introduces probabilistic assignments of trips, with cluster probabilities that 

depend on the trip costs. Section 6 introduces the probabilistic hub location problem (HP.K), 

an approximation of (H.K). The center updates of (HP.K) are explained in Sect. 7 and the 

proposed algorithm is given in Sect. 8. The paper is concluded with the illustration of the 

proposed approach, in Sect. 9. 

2 The multi facility location problem 

We denote an index set . For a vector x = (xj) ∈ Rn, x denotes the 

Euclidean norm, 

 x : = . (1) 

The Euclidean distance  y is used throughout. 

Given 

• positive integers n,N, n 

• X  a set of N points (customers) in R , 

• w = { wi : i ∈ 1,N } a set of corresponding N positive weights (demands) wi > 0, and • 

an integer K, 1 ≤ K ≤ N, 

the multi-facility location problem (MFLP) is to locate K points (centers or facilities) { ck : 

, and to assign each customer to a center, so as to minimize the weighted 

sum 

of distances traveled 

 c  (L.K) 

where Xk is the cluster of customers assigned to the kth facility. The case K = N (every point 

is a center), is of no interest. The case K = 1 is the Fermat–Weber location problem (Drezner 

et al. 2002), where assignment is absent, 

  (L.1) 

The objective function of (L.1) 

  (2) 

is convex (strictly convex if the data points are not collinear), and its gradient 
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c 
 i

 (3) 

 = − c 

exists for c ∈ X, i.e., c = . The optimality condition ∇ f(
c∗ ) = 0 gives the optimal 

 

center c∗ as a convex combination of the points { xi : i ∈ 1,N } , 

 x ∗ 

c i i

 i , (4) 

 

with weights depending on c∗ , giving rise to the Weiszfeld iteration (Weiszfeld 1937), for 

the updated center c+ in terms of the current center c, 

 c , if c ∈ X, (5) 

with some modification for points c ∈ X where ∇ f(c) is undefined (Vardi and Zhang 2001). 

For 1 < K < N, the problem (L.K) is NP hard (Megiddo and Supowit 1984). It can be 

solved polynomially in N for K = 2, see Drezner (1984), and possibly for other given K. A 

heuristic method given in Iyigun and Ben-Israel (2010, 2013) replaces the rigid assignments 

of points { xi } to the clusters { Xk } by membership probabilities, 

 pk(xi) = Prob  (6) 

assumed to depend on the distances { d(xi,ck)} . The combinatorial problem (L.K) is 

approximated by the probabilistic problem 

 ), (P.K) 

with two sets of variables, the centers { ck } and probabilistic assignments { pk(xi)} , that are 

updated iteratively. The problem (P.K) uses the same data as problem (L.K). 

The problem (P.K) separates into K single facility location problems, coupled by the 

probabilities { pk(xi)} . Indeed, for fixed probabilities { pk(xi)} , the objective function of (P.K) 

is a separable function of the K centers 

  c  

 
 

  1 
 

x   

 x   
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 ), where  

and each fk(c) can be minimized separately. 

3 The problem 

Given 

• positive integers n,N, 

• X a set of N points (cities) in Rn, 

• W = { wij : i,j ∈ 1,N } a set of corresponding N2 positive weights (demands) wij ≥ 0, and 

• an integer K, 1 ≤ K ≤ N, 

the hub location problem (HLP) is to locate K hubs , so as to minimize the 

total travel costs in the system, 

 ), (H.K) 

where c(xi,xj) is the minimal cost of travel from xi to xj , a cost that depends on the hub 

locations and usage, see (15) below. 

We assume 

 there is a direct connection between any city and any hub (8) 

and 

Fig. 1 Illustration of Example 1  

 travel between any two cities may use at most two hubs. (9) 

Some terminology: A route is any path between 2 cities, directly or through (at most two) 

hubs. Given K hubs, the number of routes from xi to xj (or any two other cities) is 1 + K + 

K(K − 1) = K2 + 1. For any hub ck, let Rk(xi,xj) denote the set of routes from xi to xj with xi → 

ck as the first stop, and let R0(xi,xj) denote the nonstop (direct) route (not using hubs). The 

cheapest route (see discussion of costs in Sect. 4) in Rk(xi,xj) is called the kth trip from 

. 
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In a network with N cities and K hubs, there are 2routes, and 2 

1) trips. 

Example 1 Given 2 hubs, c1 and c2, and any two cities xi, xj , there are 5 possible routes from 

xi to xj , see Fig. 1, 

R1: xi → xj 

R2: xi → c1 → xj 

R3: xi → c1 → c2 → xj R4: xi 

→ c2 → xj 

R5: xi → c2 → c1 → xj 

There are 3 trips, the cheapest routes in the sets R0(xi,xj) = { R1 } , R1(xi,xj) = { R2,R3 } and 

R2(xi,xj
) 

= { R4,R5 } . In particular, R1 is a trip, the 0th trip from xi to xj . 

4 Costs 

Nonstop travel between cities The cost of traveling directly from city i to city j is denoted 

c0(xi,xj), and is proportional to the Euclidean distance between xi and xj (if there is a direct 

connection), and can be identified with it 

d(xi,xj), if the cities are connected, 

xi,xj(10) 0 

 ∞ otherwise, 

Direct travel between hubs We denote the location of the kth-hub by c . The cost 

of traveling directly from the hub ck to the hub c , is proportional to the Euclidean 

distance between ck and c, with a discount factor α(k,), 

 (11) 

where 0 < α(k,) ≤ 1. Here 1 is the cost saving per mile traveled between these 

two specific hubs. 

Direct travel between cities and hubs No savings are assumed for a direct travel between 

cities and hubs, and the cost is therefore 

  (12) 

Minimal cost of routes from hubs to cities The minimal cost among all routes connecting 

hub ck and city xj is, by (9), 

 c(ck,x . (13) 

Costsoftrips Recall that a trip is the cheapest route with a specified first stop. For , 

the cost of the kth trip from xi to xj is, by (10) and (13), 
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 ;

 (14) 

,K. 

Minimal travel costs Finally, the minimal cost of travel from city xi to city xj , denoted 

c(xi,xj), is given by (14), 

 . (15) 

The two extreme cases for the discount functions α(k,) 1 (i.e. no 
advantage to travel between hubs ck and 0, where the travel between these 
hubs is free. If α(k,) = 1 for all pairs of hubs, we expect all hubs to collapse into one hub, 
see Corollary  = 0 for all pairs of hubs, we expect the hubs to well 
separated, and to serve their regions, because then only the local travel matters. 

Corollary 1 If α(k,) = 1 for all pairs of hubs then the hub location problem (H.K) 

reduces to the Fermat–Weber location problem (L.1) of finding the center of all cities xi 

with corresponding weights 

 there is no direct connection from x  

Proof Let α(k,) = 1 for all pairs of hubs. If there is a direct connection from xi to xj then by 

the triangular inequality the travel from xi to xj will not use a hub. If there is no direct 

connection then, by the triangular inequality again, only one hub will be used. It follows 

from (8) that all hubs collapse to one, the center of the points  where the 

weight of each point is the sum of the demands wij that cannot be shipped directly.  

5 Trip probabilities 

Given the hubs and their locations, all trips in the system can be determined by (15), finding 

the optimal routes between any two cities directly or through intermediate hubs. The traffic 

patterns can then be used to update the hub locations, and the trips are calculated again, etc.  

We propose an alternative, probabilistic approach, as in Iyigun and Ben-Israel (2013), by 

assuming that all trips can be taken with probabilities that depend on the travel costs. For 

any two cities x  (i,j) denote the probability of taking the kth trip 

from xi to xj . In particular, p0(i,j) is the probability of direct travel from xi to xj . 

As in Iyigun and Ben-Israel (2013) we assume the principle 

 a trip is more likely the lower its cost (A) 

which we model, for any pair of cities xi and xj , by the equations, 

  (17) 

where C(xi,xj) is a function of (xi,xj), independent of k. The function C(xi,xj) is called the 

joint cost function of the pair (xi,xj). It is analogous to the joint distance function introduced 

in Ben-Israel and Iyigun (2008). 

c   x   x    
 from  10     0 

 x   c     c   x      1 
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Using the fact that probabilities add to one, we get from (17), 

1/c (x x ) 

pk(i,j)(18) 
= 0 

and the joint cost function, 

 , (19) 

which is, up to a constant, the harmonic mean of the K + 1 trip costs. 

In the special case K = 2, 

, 

and, 

. 

6 An extremum problem 

Abbreviating pk(i,j) by pk, Eqs. (17) are an optimality condition for the extremum problem 

  (20) 

with variables { pk } . The squares of probabilities in (20) are explained as a device for 

smoothing the underlying objective, min , see the seminal paper by 

Teboulle 

(2007). 

Recall the hub location problem: given integers 1 ≤ K < N, a set of N cities  

, their locations { xi } , and N2 demands { wij } , determine the locations { ck : k ∈ 1,K } of 

K hubs, so as to minimize the sum of costs of travel, 

  (21) 

{i,ji}=∈j1,N 
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with c(xi,xj) as in (15). 

The hub location problem (21) can thus be approximated, using (20), by the minimization 

problem 

 (HP.K) s.t.

  

with two sets of variables, the hub locations { c1,...,cK } and probabilities { pk(i,j) : k ∈ 

, corresponding, respectively, to the centers and assignments of the orig- 

7 Probabilities and centers 

The objective function of (HP.K) is denoted 

  (22) 

= 0 {i,ji}=∈j1,N 

A natural approach to solving (HP.K), see e.g. Cooper (1964), is to fix one set of 

variables, and minimize (HP.K) with respect to the other set, then fix the other set, etc. We 

thus alternate between 

(1) the probabilities problem, i.e. (HP.K) with given hub locations, and 

(2) the centers problem, (HP.K) with given assignment probabilities, and 

update their solutions as follows: 

Probabilities update With the hub locations given, the distances d(xi,ck) computed for all 

hub locations ck and data points xi, and the distances between data points xi, xj , the 

minimizing probabilities are given explicitly by (18), 

 1/c 

(x ) 

pk(i,j)(23) 
= 1 

Centers update Fixing all the probabilities pk(i,j) in (HP.K), the objective function (22) is a 

non-separable function of the hubs. The kth hub ck appears in all the kth trips (xi → ck → · · · 

), but may also appear in some of the th trips ( · · · → → → . 
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In general, a hub may appear in all trips except for the non-stop trips. Taking the partial 

derivatives of (22) with respect to ck gives the hub ck as a convex combination of the data 

points xi, and of other hubs c that communicate with it. 

This is different than in the problem (P.K), where the objective (7) is a separable function 

of the centers, that can be solved separately, with each center a convex combination of the 

data points. 

For any pair of cities = , and a hub 2, define 

the functions, ⎧ ⎫
 

 1, if the trip from city i to city j first visits hub k, 

⎪⎪ 

⎪⎪ 

⎨ and goes directly to city 0, ⎬ δ (i,j), or 
through hub = 0, 

⎪ 

 ⎪ ⎪
 

 ⎩0 otherwise. ⎭ 

 = (24) 

Then the cost of travel in (14) can be written as 

  (25) 

where . 

The cost term in (  will be 

 . 

For simplicity consider the case of two hubs (the results are easily extended to the general 

case). Assume that the probabilities p0(i,j),p1(i,j) and p2(i,j) are given for . The 
objective in (22) is 

 

where (by using the functions (24)), 
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Theorem 1 Let the distance functions, d(ck,cl) in (11) and d(xi,ck) in (12) be Euclidean, and 

the cost functions ck(xi,xj) be computed as in (14). Use the decision functions, δk in (24). 

Then the minimizers c1,c2 of (26), if they do not coincide with any of the points xi, 

 are given by 

 c  (29) 

 {i,ji}=∈j1,N {i,ji}=∈j1,N {i,ji}=∈j1,N 

a convex combination of the points { xi } and the other hub, where, 

(30) 

(31) 

 ,

 (32) 

and 

 . (33) 

Similarly, 

{i,ji}=∈j1,N 

 c

 (34) 

where 

, 

and 

. 
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{i,ji}=∈j1,N 

Proof The gradient of  c with respect to c is, for x = c, 

 ∇x c x − 

 cx.

 (35) 

,c) 

Substitute (27) and (28) in the objective function of (26) for the cost terms c1,c2 and the 

gradient of (26) with respect to c1 is 

∇ c  

{i,ji}=∈j1,N 

 
{i,ji}=∈j1,N 

 . (36) 

Setting the gradient equal to zero, and summing like terms, we get 

 
{i,ji}=∈j1,N 

 

proving (29)–(33). 
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Here, the calculation of center in (HP.K) is analogous to the Weiszfeld center as in Iyigun 

and Ben-Israel (2010), except each hub center is not only convex combination of data points 

xi but also the other hub. 

 Derivation of formulas for c2 can be shown similarly.  

8 A clustering method for the hub location problem 

The above results are implemented in an algorithm for solving (HP.K). A schematic 

description, presented for simplicity for the case of 2 hub centers, follows. 

Algorithm 1 A clustering method for multi-assignment hub location problem 

 

Data: X data points (locations of cities), 

W = { wij : i,j ∈ 1,N } weights (demands) between data points, 

K = 2, the number of hubs, 

 =2 discount factors between hubs, 

 > 0 (stopping criterion) 

Initialization: K = 2 arbitrary hub centers , 

Iteration: 

Step 1 compute costs of travel  for all xi,xj ∈ X (using (14)) 

Step 2 compute probabilities  for all xi,xj ∈ X (using (18)) 

Step 3 update the hub centers { c+
k : k ∈ 1,2} (using (29)&(34)) 

Step 4 if  stop 

return to step 1 

 

9 Numerical examples 

In order to illustrate the proposed algorithm, the test problem, German Towns (Späth 1980) 
from the literature is used and the results are shown below. The initial locations of hub 

centers  are taken randomly in the convex hull of the set of data points. 

Example 2 This example uses the data of German Towns, originally presented by Späth 

(1980). It is required to locate 4 hub centers to serve the 59 towns shown in Fig. 2(a). 

Algorithm 1 was tried, starting random initial centers, and using different discount factors 

α = 0.00,0.10,0.25,0.50,0.75,0.90,0.95,1.00 and a tolerance  = 0.001. Here α = 0 indicates 

full discount and α = 1 indicates for no discount. The discount factor between 

the hubs are taken equal and the demand wij between each pair of data point is assumed as a 

unit flow for both directions. Cost of direct connection is infinity in all instances. 
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The discount applied between the hub connections affect the locations of the hub centers 

and their serving to the demand points. Figures 2–4 show graphically the effect of the 

different values of discount factor on the hub locations and on the points that they serve for. 

Since travelling between hubs is more economical with the lower values of α, the hub 

centers are located far away from each other and they get closer to the demand points. For 

α = 0, the problem becomes a clustering problem or a multi-facility location problem, which 

is a particular case of HLP, each point is served only by the closest hub center. As the 

discount decreases (means higher α values), there is less advantage to travel between hubs 

and the hub locations get closer. Finally, when α = 1 (no discount between hubs), HLP 

problem becomes a Fermat-Weber location problem and all hubs coincide, see Corollary 1. 

The discount factor between hubs leads to the allocation of a demand point to multiple 

hubs. The number of data points served by multiple hubs increases with the higher values 

of α. As seen in Figs. 3(b), (c) and Figs. 4(a), (b), there is an expressive increase in the 

number of connections between cities and hubs when the value of α increases (that means 

travelling between the hubs is fully advantageous). 

Example 3 We solved Example 2 for K = 2,3,4 using two discount values α = 0.2 and 

0.7. Again the flow demand between any two cities wij is 1. The solutions are shown in 

 

Fig. 2 Data points of Example 2 and solutions for cases K = 4 and α = 0.00,0.10 
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Fig. 3 Solutions of Example 2 for cases K = 4 and α = 0.25,0.50,0.75 

 

Fig. 4 Solutions of Example 2 for cases K = 4 and α = 0.90,0.95,1.00 

 

Fig. 5 Hub locations for Example 2 for α = 0.2 and K = 2,3,4 
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Fig. 6 Hub locations for Example 2 for α = 0.7 and K = 2,3,4 

Fig. 5 and Fig. 6. For all cases of K, again hub locations are far away from each other in low 

values of α (high savings in travelling between hubs) and their locations are getting closer 

with high α value. 

10 Conclusion 

The planar hub location problem with multiple assignments has a non-convex and 

nondifferentiable objective function. The probabilistic clustering algorithm presented here 

proposes an approach for solving such a difficult problem. The algorithm is simple and 

requires a small number of cheap iterations. The numerical experiments show that the 

method can solve large instances of the problem in reasonable time. 

The algorithm stems from a probabilistic clustering algorithm and it has a dependency 

on the initial locations of the hubs, which affects the quality of the final solution. 

Since the planar hub location problem has not been studied extensively, as of our 

knowledge, there is no benchmark dataset in the literature. Results of our numerical 

experiments on simulated datasets and comparisons with other algorithms will be reported 

elsewhere. 


